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Concerning the Calculation of Higher Derivative Complex Functions

by G. N. Duboshin

In &ke analytical celestial mechanics as in other scientific

disciplines, there is often a requirement to find a way of solving

VV»._.S) HUE

differential equatlon systems{ ThIS“HT%ﬁ“appites~Ee_the flnlte
o e
equation systemi

;' o f/"J-,f/ﬁ M/\"""’?‘"E/S‘ i‘/n w‘%f@/g\g y@,‘/,}

an_order—of positlve%&egﬁégs, either

Mbv‘/}‘i}‘ &,!we‘_.f‘
one or several parameters entering into these questions.

Usually, from the very appearance of the equations and im-
plementation of theories in existence, it is possible to present
the solution of a similar series of equations which interest us,

Madw#(/‘«g,ﬁ A A
so that the problem of the computation -is—a—matter—ef determining
the coefficients of these series.

These coefficients, as it is well=known, are determined suc-

VAo AneL g, vé'i
cessively in nﬁmber of theerlncrease either by single-type systems

Aa(‘ff T

Attt

of linear, non-uniform equations (provided the solution ig-of finite
Agd:igﬁ"b

equatlonég or by 31ng1e type systems of linear, differential, non-

WMG”E TR
uniform equations if the solution is of a system of differential

equations.

eyl W

Both of these systems are usually obtained as a result of sub-vz
stituting into the initial equation, instead of unknown functions,

determining their above-mentioned series and following this with a

comparison of coefficients with the same parameter degrees in the

left and right portions of the equations.
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These operations do not present any principal difficulties, but
usually require the fulfillment of cumbersome and tiresome calcul-
ations, since the left ﬁzf%f%nwa finite equations, which must be
solved, or the right side of differential equations which must be
integrated, in themselves represent an appearance of series situated
in whole degrees of increase of unknown functions and parameters.

In this manner, it is n?éessary to substitute series for

series and then perform computatlons and reductlons.
Fo, i .
These computatlons are slightly ﬁecréased~1n cemplex1tyxﬁf

o w 5
theEﬂquatlons%ystemsgwhlch serve ﬁ@@wthe-determlnatﬁwne@ﬁ unknown

coefficients of the desired series are deducted by way of subsequent
differentiation of initial equations by parameters. The calculating
of unknown function quantities of these parameters is then followed
by substitution in the resultant equations entering into their
parameters of zero value. This manner of obtaining equations that
determine the coefficients of the desired series leads to the com-
putation of sequential gsrivat%ves from complex functiomns with
gw 4 i‘“ﬁfm

several 1nterm1ttentgamp11tudd and demands the implementation of
general formulas for higher derivative complex functions.

Even though similar formulas were examined on numerous occasions
and were deduced by many researchers mainly for the s$pplest function

&t

cases from one variable with one 1nterm1ttent\aﬁb11tudg they were
essentially of little use, since their utilization requires lengthy
computations and often it is easier to fulfill several sequential
differentiations than to compile necessary higher derivatives with

the aid of general formulas.
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However, ¢éexamining the previously mentioned general formulas,
certain useful recurrent relationships may be deduced between certain
functions having operational characteristics;%ﬁ%éﬁ relationships
permit rathe€>rapidly and without much effort, compilation of expres-
sions for highest derivatives not utilizing general formulas.

Since similar recurrent relationships in;availableili;gyature

AL
was-not discovered, then keeping in mind the expediency and a de-

RE

crease in difficulty for the persons computing these problems, we
decided to publish an article concerning this relatively elementary
question. The purpose of this publication was to point out certain
simple formulas, compiling these with explanafions of a practical
character and to give certain examples of their utilization. :
PP . YA
We note in our conclusion, that this work examines only uﬁiﬁte”- N
~rapteé functions, differentiated as many txmes as necessary by any
M‘ﬂﬂww4¢?p T S 7 BV
fﬁﬁm“ entérlng\Fnﬁem thre~amplitudes.
I.
Let the function z = f(x) be given, uninterrupted and differen-
tiated any number of‘times by an independent variable x. If x has
a certain continuous function of parameter t, also .differentiated
any number of times, then z will be z complex function from t, the

first derivative of which is calculated by a well known formula

dz _df (x) dx
d = Tdx dt

Utilizing the séquential rule given by this formula, the deri-

vative of any series from z by t may be found. It is also possible
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to find a general formula which permits computation of any deri-
vative while not producing all intermediate differentiations which
become more cumbersome and tiring with an increase in numbers.
Similar general formulas, of which Leibonitz is the simplest
example, for the derivatives of any series from the production of 2
functions were on numerous occasions, deduced by different methods
by many prominent mathematicians and presented in many ways. By an
account of N. Ya. Sonin*, the first formulas of this kind were intro-
duced back in 1812 by Brodsky, which was then an object of study of
many mathematicians, including Russians.

‘Not entering into any investigation of various changes in these
formulas, we noted that a more expedient formula is one which was
presented by Bertram in his classical "The Treatise of Differential
Calculus' in 1864, also presented in the first volume of E. Hurse,
'""Analysis Course' in exercises named F3 de Brﬁneau.

THis formula, giving an expression of a full derivative of any
order of n fromlthe function z by parameter t, can be expressed in

the following manner:

- n o
d" ‘
am =P, (1)
B ;
where
zp="LLE. xp. (2)

*N. Ya. Sonin: Concerning derivative functions of higher orders.
Bulletin of Academy of Sciences No. 4, 1894. 1In this article is

also an incomplete bibliography.
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The coefficients with sequentive derivations from function f(x)
with variable x, i.e. Xﬁn) quantities, do not depend on the appearance
of function f(x) but only on the sequential derivations of function x

by parameter t. This is determined by the following general formula:

' 1 x’ m. my [ P\Tp
,Xg')““z mllm,!....m t | 1!/ ) ( ) (3)
where p=n-k+1,
x', x",..., x(P) the essence of sequential derivations from x by t

and the sum is distributed on all whole non-negative values of
index m7, mp,...; m, 5 satisfied by

Ly 4 i mp =k }

Loty 2emy} 3oty te - (p — 1) mp—1-po1ny =10 (4)

By these formulas, whose conclusion we do not find necessary
to deduce and whose justification is easily established by a method
of total induction, can be computed directly by a derivative of any
order from z by parameter t. This calculation leads to a final solu-
tion of two dio-fantic equations (4), all solutions for the given m
and k are easily found by a method of systematic»selection.

With given function x, the quantity Xéﬁ) appears presumably
also a function from t and has an operational character for the de-

signation of formula (3) in the following manner:
n—k41

X<"> x(t) Zn n};l [1 (.is‘;c‘fﬁt)]_~

with conditions

}u—k+1’i L .f ::
Zm -.k zsm = 1.

sel se=l
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For-application purposes, which were mentioned earlier in the
article, it is more expedient to examine quantity Xﬁn) as function p
in independent variables x', x',..., x(P), then formula (3) will

be written as
L &
X "-'-""T dts

(5)

and examining Xén) as a function p of independent variables xj, X3,

sees X then formula (3) will be written as
” X(u){ ‘ x{"‘ Xén'- o x;lp .
X. e =" [ L SN -
&k ’ 1!1 ‘x—2l ’ xp } 12 mll mal."mp.l ’ ‘
or more simply:
m, x2 ﬂlp
(n) = .
2 myl mz‘ l (6)

In this manner, Xﬁn) is a whole, uniform function of k degree
from p = n - k + 1 variables with reational coefficients whose re-
verse values are in essence, whole positive numbers. The number of
members in this expression which evidently depends on n and k and
equal to the various solutions of diofantic systems (4) should be
designated NE. ‘With the solution of equation from (4), it is useful
to know this ahead of time and we later show themethod of its deter-
mination.

We will point out easily computed instances of formula (6).

We'havevfor‘every n the following formulas:

] : Xl(".).-x,,, u e e e e ~2, .
X(") nix X ‘ 3 XII--I 2)1 xn xﬂ;
z = -5 e ﬂ'—G) “} ) .

The second of these formulas is easier expressed in this way

Yo e £
r

llxgﬂ) —_:.21;)6« x'}“' ?\’

" gasl
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where T is a somewhat more while number, concluding in n/2 i.e.,
and
'155;3r, if n is even,
=1 in all other cases.

From these formulas emerge corresponding values of N} in these

particular cases, and specifically
My wme (£) e e,

We will now demonstrate how to expediently compute expressions
| for functions Xﬁn) for all intermediate values of k and how to find
corresponding numbers of Nj.

’As previously noted, X&n) is a whole, uniform function of the k
degree in relation to the variables xj, X9, ..., X Besides this,
Xén) possesses a uniform quality in relation to the lower values of
these quantities, since l‘mi+9ﬁ2+--r+P'ﬁlp=n, i.e. to the number of
differential derivations. From these qualitie; flows a rapid, simple.
and recurrent correlation for function x§n2 Actually, substituting
to Xﬁn), which is determined by formula (6), Eyleis theorem concerning

uniform functions can be written as

TR N axim
ox) axih R 0X;”
kX=X, R T R = A T
. M »,,‘_4__ [ 3 .
However, it is easy to see that X is also a whole, uniform
ox,

¢

fuﬁction of a K - 1 degree and of the same structure as the Xﬁn).
Therefore, this derivative is a function of the same type, but with

a lower K - 1 value. Since a further order of differentiation of
each member Xﬁn) is the same and equal to r, then the differentiation

order in the derivative will be equal to n - ¢, since the first
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multiple is the result of & differentiation.

In this way, OXQ )

x, &= Qk=—1
and the preceedlng formula becomes
n——k-H

Xk 2ok KPS @)

o) .
which gives the desired recurrent calculation'hnd this allows

calculation of the function of X (n)

For example:

n—1 Jon—t

X&"’ ——Zx, X"‘T’)’"‘ ‘”fol = .

,. nz o
Xio= “—Zx“ Xg"m') T

© gma]

n-3 s o
xip= 25X 9
Then, for example, applying these formulas in function ngz we

find this after making all mandatory presentations

| ng) xzxzxc +x1xax5 + xaxax4 + 2 xlx., + 2 xzx.; +

"1 U
+ 2 x2x5+ 5 xs»_ R

which is easy to ckeck with direct calculations by formulas (3)
and (4).

There only remains the éetermination of the method of finding the
Nﬁ numbers. This method we found in the classical‘expressions of
Euler--"Introduction Into the Analysis of Infinitismals."¥ In
chapter XVI, wheré it is shown that the desired number is equal to

the coefficient with zX xP in the expansion of infinite products

0 1 1 ‘
"ot T—zxs = (le=zx) (1—2x%) (1—zx3)..]

*See Russian translation under the direction of Prof. S. Ya. Lurye,
OHNTI 1936.
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into an order situated by increasing degrees of z and x, in this

manner we obtain

o N

ﬂ 1-sz = 2 L N (8)

S=al - =0 k=)

From this formula it is easy to bring out a recurrent correlation
for the Nﬁ numbers. Actually multiplying both pafts of equation (8)

by 1 - 2x, we have = ) N ‘
nll-z,\-"“ =(1 ——zx)Ean = Z(‘NQ—NZ‘:D 2*x
e

ﬂtkj-" . n,k‘

On the other hand, substituting z for xz in formula (8) we have

T -
Tt St - Sa-ene,
Sanl. o k. L
from where

Z(AII:""N 1) 2" _.ZN”“" kgt
: nk ’

The comparison of coefficients with identical derivatives

zK x in the left and right portions of the equation gives
Ni—=NiZi= Nz,
from where
Ni=NZILNg=* ©)
This is the desired recurrent correlation which allows rapid
calculation of a number of various solutions of equations (4), that
is, the number of various members of uniform functions of Xﬁ

For example, for function ng), we obtain

M=N+M=E(7)+M
Na__]v,-{-N?. E<“>+1
and finally ‘ ‘
M= () + E(5)F1=d4+241=7.
With the aid of formula (9) , it is easy to compile a table of
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Nﬂ numbers and also brings out a number of other correlations

1 N~k 3
Ni = Npfi — Ni¥i

ok
. — ne—Rk
NI=3 N,
1
= Riem2btmmel

) n-2k et
NI’: = Nn—_k —'E

n-k=1"°
Se=0

We note that with n - k{k or k > n/2 we obtain
Nz_kzo’
and then
Nk =NiZu

which is easily checked immediately.

0f further interest is the discovery of the totals of N} for a

given n, that is, the number of all members in formula (1).

- To obtain this number, which depends only on n, let us arrange

series (8) by x degrees. We receive

o)

: oo LR
n-—i—_'_—l—z;:r= EAn(z).'xnf._ (10)
¢ swml - =0 N
where o n
An (z} 22 Niz¥,
’ k=] o
from which, assuming that z = 1, we obtain
Ni=8,(1) = Ap
2, Ni=A,(1)= (11)
But, assuming in formula (10) that z = 1, we obtain
foe) H o0 .
1 n
Tli==2 A" (12)
se=l n=0

it follows that the desired number A, equal to the coefficient with

xn

in 'an expansion of infinite derivations

, 1 #
=0 =)0 =5)..:

in a series distributed by increasing degrees of x.

For the direct determination of A, numbers, let us examine the
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following expansion
o -
[0}
[T —*)=2 0" (13)
se=l1 =0
Multiplying equations (12) and (13) we obtain
E(Ao =t A1 7 +A,,..;a1+A (o) X" =1,

from where
Aoao =1 o,
A aﬂ'+ Axan_.l“}“ +An-—1a1 +A ao—-’

which gives the recurrent formula for the calculation of A,

n—-i

2 A an-—s

Concerning @G , numbers, in the previously mentioned Euler's

(14)

expression it shows that a,=(=1"

when n is a number appearing is n=‘-lf(3*’iT4“) .‘(;_—.-:0., 1, 2..0)

in all remaining cases.
In this way, all coefficients of (}, are known and formula (14)

consequently allows finding the A, numbers independent from NE numbers,
which may serve as a control for the calculation.
It is easy to obtain for A , expressions clearly dependent only

on an numbers. Actually we can write the following systems of equations

aoA + alAn-I +a3A Hoed +a3Anu3+ +au-—3A3+an .-2A +an—1A +a 20 — g
aoAn.-l + a‘An—2 + agAn—-3 + o ‘+ (1 Py 4 + an-'%Ag + a;;...aA + An-1 0
‘ aoAn-—f +a1An-3 +~ . -+ an—-sAs + an~4A3 + an——3A1 + Qn2l ¢ =

., 8
:.350i‘."'I’DOOOOC'I ...............

R R aoAa+a1A +a,A +a,A,=0
R .",j‘ el r" [P : aoA,-{-—a;A +a,A, =0
| :\ . - TR : ) ca ‘ﬁ L e e aoAl a4, "'O
R I, L IR aA, =1
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Eliminating from these equations Ags Aj..., Aj_9, Ay-1 and

keeping in mind that the system determination is equal to:an;{'1 =1,

0
\‘\ )
we obtain: .
4 0Oa, a, ag.....: An-3 Qp—y Gn—1 .,
! O ao d\“ dg...'. o s Aped Ap3 a,;—ﬂ ap-1
] 00 apazeeees An—s Qn—4 An-3 An-2
100 0. @.oee Qb Ans An-4 A3
! . . : . Al o
i 6 o » s a's o 9 ¢ s e s e CeTe e se e a e
Al lriiiiiniiiinl
- {000 0...... ay .4 G 4
0000...... 0 ra a - @
1000.0......0 0 .4q 'a
1000...... 0 0.0 a

Since A, numbers depend only on one index, then it is simpler to

compute a table for them, than for Ni' numbers which depend on two
pute k p

ind@s. This table is obtained if we directly write out expansion

(12): . » o , o .

=Y, Ay = 1 x4 2204320 45 x4+ T 4 11 0 1541+
X

ol

—

. a=0 . ‘
C 199 x8 430 X% -1 42 £10 L 56 x11 77 x12 4 101 x1° 4 135 14 - 176 x1° -
ji:}-231 ;c(:ﬁ +29}{_x17 385 x5 - 490 x17 - 627 420 - 792 6B} 1002 x4~
|- 1255 x9 - 1575 x2¢ |- 1958 £%° - 2436 x20 - 3010 x*" - 3718 £° -
- 4565 x2 + 5604 X0 4., - (15)

Utilizing formula (1l4), it is easy to continue this series to a

sufficient length. Let us turn our attention to the Nrﬁ number which

may be expressed through the coefficients of expansion (15) A,.
Let us notice, first of all, that from the very determination

of Ay numbers it follows that any A, is a number of whole non-negative

solutions of Disphantine equations

o, 203800 Fvay, =v
Let us return to equation (4) from which we obtain

m,+2 mg+3m, 4. . .'—é—(n_ — k) Mp_pp1=n—RK.
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Evidently the % number represents a@z:ole fandform, non-negative
A A1, Vi LA,
~Dumber-—ef solut?:ons to this equation and eaeh-e—ﬁ»th%salﬁ@ggs cor-

s o pedekionse
responds to formulas (4) a single value of mj

my = k— (g My~ . - Mg,
If the m; value calculated by this formula is not negative, then

we can obtain a certain system of solving thée equations (4). But
myfmgt.ibm, L <n—&, and therefore, m; will be predictably non-
negative if n - k< k, that is if k= n/2.

Therefore we obtain

Nk—An-—kn lf 2k " {
&7
If 2k < n, then the last formula is not uﬁﬁgle, But in this case

other formulas may“‘be obtained. Actually, we will rewrite correlation
(9) as N =N — Ni7t,

from which we obtain

) n~2R-1 :
L) 2128 n—k
Ni = Np Z Nn—it—a;

then we have
NEQ—-A,;—k~Ao"4A1“A2—
But this forn}qla ends in different ways, depending on the value
of k (which is assumed to be less than n/2). Without describing the
details, we present only the final formulas. We have

Ni=Aes if @/2

: Il—-22k—-l .
N/g-—A...k-- A.,, N
eSS L D D oF
. . s . one-2k—1 - . , .
Whllen=5( ) N"’—'Aa—k“‘ZAa =Y Nk, if /;<”';2,

These formulas are' sutricient for a rapid calculation of A}

numbers with the aid of coefficients the order of (15).
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For example:

-

N = ALy, A =‘,-77,—1A——1~2-'3-5-—7- 11-2=47
8. . 10 : ’ :
- N ='A17“‘2A° ").JNW-a"‘Au“‘Ao""A "“'Az“'A “"As"'/‘s
‘c..O g==0

—A—Ay—Ny — N} = Ag—Ay— Ay — Ay Ay— A, — Aa-—-.-,s—-A.;--

—Ag—(Ay— A —(Ayy—Ay— A, — Q)= Ay} Ay— Ay— A, — A —

—Ay— Ar— Ag— Ay — Ay =207+ 1—3—5— 7 11 == 18 = 22 30—
N .  —42=163. "

With.this we finish the examination of the simplest instance
where the complex function depends only on one intermediate variable.
II
Now let us examine functionéggg/two independent variables.
differentiating z = £(x, y),
Mty
any n eﬁ/by each of the variables x and y which are assumed to be
differentiate&b%%y5gﬁgggr of times by the functions of parameter t.
Then z will be a complex function of parameter t and its com-
plete derivation by t of any order n may be célculated by the following

formula, which is a true generalization of formula (1) and whose

justification is easily found by a method of complete induction:

d"z = (,,)
7o n‘;_lzk ) (16)

where

VAQ) __Z okf (Ji:dy) Zﬁ,’f)_ s"‘

. e ° - ye's
Coefficients Z(n ,s with partial derivatiems do not depend on
<
the form of functiong f(x, y) but only on sequential derivatiéns from

x and y by parameter t. Utilizing the designation e£ (5), we can
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present these quantities in the following general

Sy

formula
* where

m "y 'n
p,=ﬂ-~k+1,» \\fm S\ -"x x2 ‘er yl )’2

- n-‘. ’n‘l ’ng!""npl nxlnz! ‘
W“m

and the total is distributed in all non-negative
m,, m,,..

values of 1ndé§§s
WMpy By, Rye.un,, satisfying the conditions:

ml—l—,m2‘+...+mp=k-—s, n1+n,+....+np=s }
my+2my+3myt-. . pmy -0, 420,43, 4. . pr,=n

By these formulas it is easy to directly calculate these functions
of Zé?g s+ Thus, we have first of all

Zpy= X 2= Yy,

(20)
ﬁ‘/),m sk
where, evidently the y?&glueuas calculated by these same formulas,

~ as are the x functions, with a change of all x's to y's.

. 2
It is also easy to directly obtain this formula

. ' (21)
g fgzé' W V&&%gmwé:ﬁé
For other values of k and s we have e 11y checked formulas
©on—kts
= X

&
(22)
or
n—s 9,
Z(:ls = E X(;') s ,Y("

orf—S

(23)

From these formulas it is easy to calculate the number of various
members contained in function z{n)

Actually, if we designate this
3
number thégﬁgh NR-s s» then we w1ll evidently have

n—k+s Coop—s o

: . — nwg

Nio= Y Npz N‘ Y Ny N
M‘ / ouk—-s.’x

(24)
wwhife the number of various members, entering into the expression-.of
function Z} would be evidently equal to

N" "“2 k--a =

lN"

k8, 8 v

1 MM

(25)

(19)
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where ;;=E(€;)

Formulas (22) and (23) are quite useful for the calculation of

1

function z anfjin this way, Jif-is—a Yapid compilation of dexivatiw

o

&, ,W”‘Wﬁ::‘f
expressig£ of any order with a complex function with two intermediate

arguments. Actually, the calculation of function z requires only the

ability to calculate the x functions, which was examined in detail in

A@Section I.
&

e 93

~“These recurrent formulas follow fromlﬁ general formula (18) which

shows that function Zgazs S is a uniform function of dgﬁwdegreeﬁfrom
5

2p -f" variables X]+eeXps Y1eoYp-
Therefore, again utilizing Euler's theory concerning uniform

fu?q;iq?s as was done in section I, we easily obtain a recurrent formula
-2 £ £ . .

P b % 1 p Z( ) }
2n  ome X Z‘”::l : +y° ku-;: s1]"
kS, $ 3 ::1 { & 5 (26)

@w&i utilizing thii%i?ééufficient number of times;'we will pzesent the eal-

culations of the necessary funstion z with any ,two lower values to, the
A, wx’z’;ﬁ%ﬂ@é‘ £ Gl AR

ro Avwer Poboin 88 sgerl 15 gaanohl

computation of function z. ﬁinn%«each of the two lower values is equal
— .

‘to one,we directly utilize formulas (20) and (21).

Finally, function z can be examined as a uniform function of k - s
d . C o Sy Pt e .
egree from variables xj, X .. Xy, Sinee the uniform function of s de-

gree.ﬁﬁgi;;m variables y7, Y2+ Yp-

Utilizing Euler's theorem in this way, again as in section I,

we easily obtain two more recurrent formulas, quite useful for various

instances of computing function z:

O
' —— 1 ()
zp, =y i Ll

SN Y (27)

~
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: P
1 —
Z(k".)-s s =TZ Z:—-s.)x-—l ° ( 2 8)
To give examples of utlllzlng the presented recurrent formulas,
we will examine certaik@g%mple cases, which are encountered by us in

other works.
fet z=x ° vy,

where x and y are the essence of any functions of parameter t. Then:

oz gz Pz _ Pz 03z _
dx =y, ,-@-—-x, a_;g'—‘o’ dxdy ""1’ aya""P

and all remaining partial derivatives are in essence nil.

Formula {6) gives
| mn._nMZY) ‘zm);

From formula (17) we have

ZP = y 2} +x2Z8% = yX{ 4 xy = yx,.+xy,.-

n—-1

- Z('l) (")——Exn_,y,. L

L e

gl -

Assuming that for symmetry x = ¥

0 ? y = YQs
we obtain
i)
L = L S (29)
If we substitute x,_ and y for these expressions, then we will

obtain a Lubnitz formula for derivatives of the nth order from the
derivative of two functions.
Let z = xyz,'

where x and y are in essence any functions of parameter t. Then:

az‘

0z —? 0 e 3z iz T oz
o= =Y Gy =2xy, '-g;;s'?oa '5—'7‘-*2)’ oy :-_-:Qx.
Bz Bz S8z 93z S,
‘,mVJLaEW“Qbu@W"? oy “0"m
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and all remaining partial derivatives are in essence, nil.

Formula (16) gives: JL: =nl(ZP + Z8+ Z).

From formula (17) we obtaln'
2P = o Z 2y 2 =y x, +2xyy,.,

n-—1

ZP=2yZ" +2xz§,2=2y§:x,._,y,+2x§_“1,,y,y,,_,, Py

o =1 Guw]

For the calculation of the last functlon it is easier to im-

plement formula (27) which gives
' oh—1, n- 2 , n— 2 f—c—]
Z(n) 2 n- )___ 2 Um——c__ = 2 Xa Z y,y,,__,__ﬁ.
¢ =ml == 1 gaal - .

Making the summation and agaln assuming X = X5, ¥ = yo, We

easily obtain the following formula:

Ay .
- ._2n12xn—k2 lkyk--yo d (30)

& v k=0 ge= 0

where ¥ signifies a larger whole number contained in k/2, that is
= E(k/2).

Without demonstrating any further examples, we will merely point
out that a curious formula for n derivative,fractions, which is easy
to obtain when examining this function

= y/x.
This formula, which we will not explain in detail, may be written

in the following manner'
(_4ﬁ+1w~n1 il

.u»(--)—- ’Z AT ) (xy.'fﬁ,‘)Xg':ﬂ,

O o

JORpSY 2

- Let us examine one more 1mportant instance of a complex function,
when it depends on the independent variable t and is directly in con-
sequence of one intermediate variable.

We will have this instance assuming simply that y = t. Then

Z = f(x,t)
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where x is any function from t.

In this case n=1, yu=}’u=z--=0~
Formulas (16) and (17) give
dflf(x’ t)____ a f(x t) n?.. »
oL ’”22 P TR
Roeal§a=0
but Z% = X,
while for other values of s, we will utilize (28) which gives
»denls:s——"%‘ ”:sl,)s—-l.o
again utilizing formula (28) and the s‘order, we will have
Zgzn-)-s.s.=‘sl‘2$¢n—sf) = X(n:‘.r)'

as a result the desired formula may

manner: an f(x,8)

dth

Y, ¥ S

Roml s=0

The last formula may be useful

A
axk"’OF el

be written in the following final

1 X&n =4)

(3D

with the solution of the following

problem, often encountered in the additiom.

Let us equate f£(x,t) =

having t = 0 with a solution x = 0.

sufficiently small, the solution of

the order k=%b+&ﬂ+n

The coefficients of this order
1 di x

*n =T\ "de

et Xt

tan 0

If £'x(0,0) # O, then with t # 0

our equation may be presented in

are, in essence,

With the aid of formula (31), it is easy to obtain a recurrent

formpla for the solution of these coefficieﬁts.

‘Actually, differentiating the equation f(x,t) = 0 n times by t,

considering x as a function of t and assuming after differentiation

= 0, x = 0, we obtain as the basis of (31)

2 Zf"‘? s (0 0).

Rem]l sSumQ .

X gz—-s)
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. where X is the essence of functions from'xl, Kseoo From here we may
express fx(O,b,.x T+ TS 0s (0,0) 5 XE = 0,
Y] 5,0 ",. NG L . ‘. K
: = (m ,__ ~s)
from which K== 7O (0 o) Eugof ...f,s(O O) Xi—: '
(32)

this is expressed by coefficient x, with t" through all preceding
X1s X95s0+5 Xp-le
In this way, formula (32) allows calculation of the coefficients
of the necessary expansion.
III
The formulas examined in the previous section can be easily dis-
tributed in an instance of any number of intermediate variables.

Let us have the following function: Z=f(kp %0000y %)

from r the independent variables X7, X9,..., X, is the essence of
function of parameter t, differentiated any number of times, then z
will be the complex function from t and its complete variable of the

nth order can be calculated by the following formula:

o d” )
.~ =nl Zi)
- Z.:l : (33)

where 0k F(X,, X2, .. .xr) Z"’)
! ax”'ax 3 6xr ; B

(34)
The total is distributed in all whole, non-negative values of

the indeces kj, kp,...,k,, which satisfy the conditions

bbb t b=k,
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and therefore contains as many members as can be found in partial
derivatives of a k order from function r with independent variables.
The latter, as it is known, contains as many members, as ié contained

in a complete, uniform multinomial of a k degree with an unknown r

which is (k1Y +2) (+3)...(k4r—1)
128 r=1)

members. That many‘members are contained in formula (34), determining
function Zén).

The coefficients with partial derivatives in formula (34), that is,
functions Zé?z Kp,+++,Ke, as in preceeding more simple cases, do not
depend on functions £(x1, X2,..., X.), but only on sequential derivatives
functions x7, x2,...xr; by parameter t until a certain number determined
by an order of n and k.

These coefficients can be calculated by the following general

formula, which is a true generalization of formula (18) of the previous

section: ) PR

v ( ) ( “) mp x; m(%) ’ ¢ x; 2
SCNONE M N
~—-Z LU

m(l)] m(l)l m(‘)! m&z)l m(?)| ..

. (E—)m(“) (2!) xm

m(‘)l m’)! m(’)!...m")l

(f)

where as usual, DL

| p=r—k+1

and the total is dlstrlbuted in all whole, non-negatlve index values.
mm mi), 5;_ 0) md, mp-;,,mm,,;,mp p in, 9.

satisfying conditions:

) b )=ty mDF 2O L prd
Qnymﬁ+-”+mm*-.-+m@+&m9+.u+pww+‘
u-.'nuo‘_.‘o -'ono-_ '+-.o.-~- o'.g--..fc"l".

mp +. m + . +m§,’{ == k,;“ A mp +2m(2')+ oo + emg) =g
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In this manner, each of the functions Z@kwuﬁr(@kar+-f ‘T K = K
may be calculated independently from all others, with the aid of a
uniform and elementary process of solving systems r + 1 diophantic
equations with r - p as unknown.

These equations are easily solved with the aid of systematic
selection, however with a large number of unknowns, this selection
demands much time and effort and is therefore not practically suit-
able for this operation.

Another method of calculating functions 2$2%mnh(@ffkr+-gn+&;= K
is based on the application multi-numbered recurrent correlations
connecting the necessary function z with functions of the same type.
But these are lesser values of the upper index n or lesser values of
lower indeces ki, kz,...kr or a smaller number of indeces. These
recurrent conditions are obtained in the~same.conditions as cor-
responding formulas of preceeding sections and we limit ourselves in
that we will express certain ones useful to us in some presentations.

Let us introduce, first of.all, abbreviated designations similar
to (5) of the first section, and specifically examining any derivative

of any function %7, Xp,...xX, by parameter t, we assume

x(s) =T dt' - (3 5 )
Then the expression for function Z(n) will be presented in

kl) kz,o-okr
the following manner

LY
O I D (36)
' (xYW (x“W () 7 () ((”)
""-'""r "‘2 mlm(“l...m“)x m1 m“)l...m(?n T
~ o
...(w) ...(x<p) "

) N TR A

i i
SN SR}
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Oor even more abbreviated

O m®
BTN L C WA T E

D mt L, mgh

pumcl
In this manner, function Z§2> K9y oo Kyp? is a whole, uniform
function of a . k=4k 4k -... % degree from r ¢ p of variables
HD, xPyee, X0 X, XD, v X s 3 X, ¥P ¥ with rational coefficients.
. . (n) . . .
Function Zkl, Koy osoky may be examined as a whole, uniform function

of kg degree from a p variable of either r group
.J“(;), x(;), .. x};’), (c=1,2..., r)

or a while, uniform‘fuhction of r « p variables, entering into any T
from~(f =2, 3,...,1).

From here, with the aid of Euler's theorem concerning uniform
functions one may actually obtain multi-numbered recurrent correlations
similar to the one made in the conclusion of the basic recurrent for-

mula for function x in the first section. For example

,'.' Z":)‘k,.. "kr __ z x(°) Zs;':,_‘i:z, Tk ,k, ¥ (37)
" (9) (11—s) )
Zk ,k, whkp =5 Zx Zhllkl" ok leneRy |
R § - e (38)

The most notable fact, however, is that function z with r
indeces may be expressed through r function x of the first section,
every one_of which depends on p variables, entering into one and the
same'group.

This becomes obvious if we note that the z, r - 1 indeces whose

essence is zero is a simple corresponding function of x. Actually if

: k1= k,k2 =\k3 ; "' '=kr=o’
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then the formula (36) becomes

(1)
1)) x(l)) my” (x(l))
Zn — (x
X u' w0 2 O e

- Sl)-l-m —j—- ,.+m
3 .(11)_+‘2.m&)*{:"-'..._+pmg)__n

where

In this manner, Zlgr:z) o 1s a function of x from p variables of

s s 0y

the first group x{, «,...,x’ and we can express Zin, , .o.=XP{x", & ,..., x

ky =k, = kr_1=k,;"=.,;k,,§-0,

The same as if ——-k(p-—-23 s Th

now.. Zehonio= XOLD A0 oy )
(39)
For convenience sake, we will not write out the variables in the

brackets, but will express it this way: ZE 0k = X0

......

If w&.aow - 'examine formula (26), then it will become absolutely
clear that in its first part is contained the total product r of
function x, each one of the variables of one group. It is not hard
to see that the lower indeces of these functions are numbers ki, ki,
«e.5 koo If we designate the upper indeces through nj, njg...ng3,

then we can express a simple basic formula

. r

Zﬁ'ffk,, g - ZX‘;;:J};;:.) 5{(; o
S (40)
where ‘#-+#+...+k&=% and evidently n +n3+...+#=n, The total is
distributed in all whole, positive index values of N1, N9,...Nyp,

satisfying the evident conditions n1>,l'e1,"n,>/'k,,...,n,,>/k,.
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In this manner, the calculation of any function of z is presented
simply to the combination of function x, the calculation methods of
- which are established in the first section.

It is now clear that from formula (40), one can~produce many more,
combining various methods of ?‘(’t from the function of x. This will
give the functions of x with numbers of lower values less than r.

' We note only one fo;mula of this type

. n—k+lz, ) 'y
N3 ! 3,
Z8) b bt -~ E Zk.. s ok,:..;-X‘,f,. (41)
Now, if X, =t
then from formula (%%}ffollows
, £ ) o .
2 bty = 2R by (42)

We will not examine examples of formulas implemented by us at
this time. Let us note only that with its aid, a general formula of
Lubnitz may be obtained for an n derivative product-of function r.

This well known formula in the designation used by us, has the following

expression:
d® (xg . xa xr) —_ "x) "z) ("r)
AR = rﬂ}ixﬁ ":

(43)
where the total is distributed in all whole, non-negative values of

indeces nj, ny,..., Ny, satisfying the condition
' m+ny ... 0, =n.
'When utilizing this formula, it should be remembered that the
uppef values indicate the derivative order which should be divided
1))
by corresponding factors and that )(P:.- X In particular, from

formula (43) we will obtain the following

- =uY Amdxim | £#n)
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with the same method of summation.

In conclusion, we present tables of certain x and z functions
compiled by S. P. Tokmalaeva.

The following table.is a basis of function x.

n~1 X”—éb_v7f’ff{'”
=2 A= Yl
e X§2) ‘_2-xl’ : ‘A".:, N ..(
7n—3 X = X, "f
v XD = Xxxm LR

w . ""“4 : ’.' I‘—“.-,,Az:.‘-‘ : ‘
_.,;.n:--.4.' X()=.x4,” L O

X2 —'xzxa + -——Xg, . . ;‘ L

4 1 SR :

§)_. - xlx,, D -

YL VR Se At
X 24 1. S

*X(E) o x1x4+xzx3, \ \ S
35) = -—xuca + Txlxp -

x0= i

""6 Xs xsx ; , .
~h M 1 - N
‘ ng) = X1X; + Xo¥y 1 ‘Q"x:zi, >

o ;
;«X?—wymm—kﬁﬁ%+- m,

o P“?Txﬂh+‘4-mxmff¥j:
/ X = I xﬁx;, : 7 -
X0 = édx%
We will limit ourselves to these expressed formulas. More de-
tailed tables of.this type are given in an article by P. T. Reznikovsky.1

The compilation of tables for functions of z in instances of two

or larger numbers of intermediate variables is presented, as previously
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explained, to algebraic combinations of function x with the proper
substitutions where it is necessary, changing letter x for y, z.

These calculations are simplified significantly, since the factual
computations are carried out only for certain z functions, while the
rest are expressed without any calculations. Let us clarify this in
the case of two or three intermediate variables and present the results
of the calculations made by S. P. Tokmalaeva.

For the compilation of complete derivative functions z = f(x,y)
it is necessary to express the function of z with the aid of formula
(22)3and (23), where the function of x are taken directly from the
table, while y functions are obtained from x functions in the same
table, substituting the letter x for y.

But the z functions, one of the<i£§§£;é which is zero, is taken
directly from the table. The function of z, both of the lower indeces
which in essence are units, are derived by formula (21).

The functions of z, differing only in the order of lower indeces,
i.e. Z&n% and Z§n2 (a +P = k) are obtained by a simple substitution
X for y or conwversely as the case may be.

Therefore,.only functions remaining are those ‘requiring calculation
by formulas (22) or (23). There are the results:

‘Forn=1and n = 2 the corresponding functions of z are immedi=

ately expressed. For m = 3, only =  _should be written, while all
, - ?)1 = ";‘ x? Y
others are immediately expressed.

, Y1 e : @ 1,22
For n = 4, only 28 = x. %91+ o X1 Yu and z{] = %x‘iyl u Z22= XY

is discovered by calculation, while the rest istimmediately expressed.
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For n = 5, the following functions are found by calculation:

(5 1 '
Zg,f =‘ D) + xlxz,\’a“}‘xlxn}’l‘{““x?yn ZSI = "2 xlxgyl + L x} Vs
&= 9 x1x2y1+ 2 xlylym Z‘H = 24 xlyu -Siﬁ% = ‘12 xlyl '
while the remaining functions are directly expressed.

Finally, for n = 6, we obtain by calculation:

zZf) = , "%‘ xiy, +x1xaya +x1xa.V: -+ XA + xzx:yx -+
o : +""" xzyz:- - o
Z§} = xlys ‘+ xlxz)’z + “‘xlxﬁh ‘+ -5 X1X3y1,

= -xx.v3+—g Ay, + xlx,y..vz-%— ot + A
B = g Ay, + 4 x-y, . |
R -—6- Xy + %- Aegli
20 = gty 2= Y%

v ; 1 3.3
) ' Z@: ﬁ;‘.x'yh

while the remaining functions are directly expressed.

If we turn our attention to an instance of complex functiomns

= f(x, y, u) with these intermediate arguments, then for its
complete compilation of nth order derivative, it becomes necessary to

express functions of z with three lower indeces by a formula similar

to (40). 2= SXI,

where atB+p==4, ny - ny -+ ng=1n, m>o, n,> b 0>

Evidently, only functions with lower values not = 0 are subject

to calculation, since the latter are expressed directly from the

preceeding tables. Further, from functions

ny '
Zsbﬂ"b gm.‘h Z'(.Bc, &',’?, 8 Zg’:?‘u, Z('z’g,
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it is evidently sufficient to express one of these, since the rest
are obtained by a simple transformation of the letters.

As a result of these calculations, the following functions are

obtained:
for _ Ads n—~3 lel-'xly;un
for Aan n 4 Z{, = xlylu,-{-x, Y + X, y,u,,
S Z§4“_ - xly]‘u1 B
for mm n=5 Z{};= x,y1u3+x;yzu,+x;yau1-rxgyxuz +
2 -+ xz)’z‘ﬁ + xayxul '

ﬂ 1= -5 xl.qua + <" xl.l’:”1 +

+x1xzy1u'1, : N

K “. 5 1 \' ‘-
. g)'l_—_-_- ’6“7"’.1’1“13 I

\ g 255%1 == + x?y?ul. :

B n = 6 Zi 1= X = Xy Yoty xly;u,—{—
‘+‘ xz)’dh '+‘ Xo)htg + X9 Velts +
—l— XyYathy -+ Xeyty + KaYalhy X

for

Z8 =1 SR
A= v+t £
\.+ :
z Xiyatty + xlx"yluz -+ x1x2yz“1 -+

’ + KXYty + -+ x2)’1u1,
)
Z&ll ——_———xl_ylu, |+ 6 xlyqu, +

o ! 1 o
) , + " xlxa)’xuh

m\",‘
B!
) -

s ) '
&ﬁm~4mmu+~%mm+

+‘ "9 xl V1y'=“1’ T

-

We limit ourselves with these figures.

These formulas demonstrate that the calculation operation of higher

derivatives from complex functions with any number of intermediate
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arguments leads to a simple expression of necessary quantities from
the tables, which may be pre-compiled and which may be useful in all
cases that could be encountered in the introductions.

Similar operations utilized by us in another project was
devoted to the computation of orders determining the movement of

Saturn's* satellites.

*Concerning orders determining the movement of Saturn's satellites
with the calculation of the Sun's perturbation effect, Bulletin of
the Moscow University No. 6, 1949.



